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This note is a continuation of our recent paper [V. Jakšić, Y. Ogata, and C.-A. Pillet, The
Green-Kubo formula and Onsager reciprocity relations in quantum statistical mechan-
ics. Commun. Math. Phys. in press.] where we have proven the Green-Kubo formula
and the Onsager reciprocity relations for heat fluxes in thermally driven quantum open
systems. In this note we extend the derivation of the Green-Kubo formula to heat and
charge fluxes and discuss some other generalizations of the model and results of [V.
Jakšić, Y. Ogata and C.-A. Pillet, The Green-Kubo formula and Onsager reciprocity
relations in quantum statistical mechanics. Commun. Math. Phys. in press.].
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1. INTRODUCTION

This paper is the second in a series dedicated to linear response theory for non
equilibrium steady states (NESS) of quantum open systems. The development of
linear response theory is a part of a much wider research program initiated in
Refs. 22–24, 29–31, This program deals with mathematical foundations of non-
equilibrium thermodynamics in the framework of algebraic quantum statistical
mechanics. Motivated by the developments in classical non-equilibrium statistical
mechanics (see the review, Ref. 32) the program addresses the central issue of
NESS in two independentsteps.
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(A) The existence and analytic properties of NESS are assumed as an
axiom. On the basis of this axiom one develops the mathematical theory of non-
equilibrium quantum statistical mechanics in an abstract setting. This step is
primarily concerned with the mathematical structure of the theory and its relation
to the fundamental physical aspects of non-equilibrium (see Refs. 13, 26).

(B) The second step concerns study of specific physically relevant models.
Relaxation to a NESS and analytical properties of this NESS are detailed dynami-
cal problems which can be answered only in the context of concrete models. Once
these fundamental problems are solved, the thermodynamics and the transport
theory of the model are derived from the general structural results established
in (A).

So far, the main focus of the program has been the second law of thermody-
namics (positivity of the entropy production). In this case the part (A) has been
settled in Refs. 22, 25, 30, where the entropy production has been defined in the
abstract framework of algebraic quantum statistical mechanics. In these works var-
ious structural properties of the entropy production have been established and in
particular it was shown that the entropy production of any NESS is non-negative.
The strict positivity of the entropy production is a problem which belongs to the
category (B). At the moment there are two classes of non-trivial models whose
NESS are well-understood and which have strictly positive entropy production.
The first class of models describes an N -level quantum system coupled to finitely
many independent free Fermi gas reservoirs.(12,23,27) The second class describes
finitely many free Fermi gas reservoirs coupled by local interactions.(8,9,17) Some
exactly solvable spin or fermion models with strictly positive entropy production
have been studied in Refs. 4–7.

The natural next step in this program is the development of linear response
theory and in particular the derivation of the Green-Kubo formulas (abbreviated
GKF). A typical physical situation we consider concerns the steady states of a
quantum device, a confined system S with a finite number of degrees of freedom,
coupled to M reservoirs R1, . . . ,RM , see Figure 1 (a generalization of this setup
is discussed in Sec. 5). More specifically, we are interested in situations where
the system S is driven out of equilibrium by thermodynamic forces, i.e., by
discrepancies in the intensive thermodynamic parameters of the reservoirs around
some common equilibrium values. Suppose that each reservoir R j is in a thermal
equilibrium state characterized by some inverse temperature β j = β − X j and
chemical potential µ j = µ + Y j/β. If some of the forces X j , Y j do not vanish,
then under normal conditions they induce energy and mass/charge currents across
the system S. Linear response theory is concerned with the calculation of these
currents to first order in the forces. In(18) we have derived the GKF for heat fluxes
(the case µ = Y j = 0) in the axiomatic framework of algebraic quantum statistical
mechanics. In this note we discuss a derivation which applies to both heat and
charge fluxes and complete the step (A) of the program. Concerning (B), the
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Fig. 1. An open system with M reservoirs.

examples to which our derivation directly applies include all models for which the
strict positivity of the entropy production has been established. These applications
are discussed in the forthcoming papers.(19–21)

In classical mechanics there is a number of different ways to describe an open
system out of thermal equilibrium. Some of these descriptions involve various
kinds of thermostating devices which lead to non-Hamiltonian effective equations
of motion (see Refs. 16, 28). Due to the intrinsic Hamiltonian nature of quantum
dynamics, the situation is different for quantum open systems. Except in some
special limiting cases (e.g., in the weak coupling limit, see Ref. 27 one is forced
to consider the joint dynamics of the system S and its environment.

To describe the joint system S + R1 + · · · + RM we suppose that it is ini-
tially prepared in a state where each reservoir R j is characterized by intensive
thermodynamic parameters β j and µ j . Due to the interactions between the system
S and the reservoirs this state is not stationary. We shall assume that, as t → +∞,
the joint system relaxes to a steady state. Since confined quantum systems have
discrete spectrum and almost periodic dynamics, a non-trivial steady state may
exist only if the reservoirs are infinitely extended. Moreover, in order for this
steady state to be a NESS (i.e., to avoid the joint system to relax to an equilibrium
state), the reservoirs must be “ideal” in the following sense. A reservoir serves
two purposes: on the one hand it is a source feeding energy/particles to the device
S in a statistically controlled way. On the other hand it also works as a sink or
dissipator, transporting to spatial infinity energy/particles coming out of S. In an
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“ideal” reservoir the source and the sink are independent as much as quantum
dynamics allows. The fact that incoming and outgoing fluxes do not interact en-
sures that the intensive thermodynamic parameters describing the initial state of
an “ideal” reservoir still apply to the outgoing flux in a steady state. Thus, “ideal”
reservoirs are able to maintain fluxes across the system S over the infinite time
interval needed to reach a steady state.

Linear response theory of NESS is a delicate interplay between three limits
which must be taken in a definite order. First, one must perform the thermodynamic
(or infinite volume) limit of the reservoirs. Then, a t → +∞ limit is necessary to
reach a NESS. Final X j , Y j → 0 limits are needed to extract the linear response
proper.

For interacting quantum systems the first limit is already a difficult problem
which can only be treated in a limited number of models (see e.g. Chapter 6 in
Ref. 11). However, for the ideal reservoirs we are dealing with, this problem is
well understood (see e.g. Sec. 5.2 in Ref. 11). An infinitely extended quantum
dynamical system at non-vanishing density can be described in the universal
conceptual framework of algebraic quantum statistical mechanics. It is therefore
possible to decouple the thermodynamic limit from the two remaining ones. In this
paper we derive the GKF under the assumption that the these two limits exist and
can be interchanged. The justification of this fact is a delicate dynamical problem
which belongs to the category (B) and will be treated in the aforementioned
companion papers.

This note is organized as follows. For notational purposes, in Sec. 2 we
quickly review a few basic notions of algebraic quantum statistical mechanics. In
Sec. 3 we introduce the model and review basic concepts of non-equilibrium
statistical mechanics (the reader may complement this section with reviews
Refs. 6, 24). Linear response theory is discussed in Sec. 4. Our main result is
stated in Subsec. 4.2. Its proof follows closely the arguments in Ref. 18 and is out-
lined in Subsec. 4.3. Various generalizations of our model and results are discussed
in Sec. 5.

2. BASIC NOTIONS

Let O be a C∗-algebra with identity 1l and τ t , t ∈ R, a strongly continuous
group of ∗-automorphisms of O. The group τ and the pair (O, τ ) are often called
C∗-dynamics and C∗-dynamical system. A state ω on O is called τ -invariant if
ω ◦ τ t = ω for all t ∈ R. An anti-linear involutive ∗-automorphism � : O → O
is called time-reversal of (O, τ ) if � ◦ τ t = τ−t ◦ � for all t ∈ R. A state ω on O
is called time-reversal invariant if ω(�(A)) = ω(A∗) for all A ∈ O.

We call quantum dynamical system a triple (O, τ, ω) where ω is a given state
on O. The state ω describes the initial (or reference) thermodynamical state of
the system and is not necessarily τ -invariant (for a discussion of this point we



Thermally Driven Quantum Open Systems 551

refer the reader to Sec. 2 of Ref. 6). Under normal conditions, i.e., under natural
ergodicity assumptions, all ω-normal states are thermodynamically equivalent
reference states in the sense that they lead to the same NESS.

We denote by Ent(η1|η2) the Araki relative entropy of two states η1 and η2. We
use the sign and ordering convention of(11,14,15) (hence, Ent(η1|η2) ∈ [−∞, 0]).
The Araki relative entropy has played an important role in recent developments in
non-equilibrium quantum statistical mechanics.

Let β > 0. A state ω is called a (τ, β)-KMS state if for all A, B ∈ O there ex-
ists a function FA,B(z), analytic in the strip Sβ = {z ∈ C | 0 < Im z < β}, bounded
and continuous on its closure, and satisfying the KMS-boundary condition

FA,B(t) = ω(Aτ t (B)), FA,B(t + iβ) = ω(τ t (B)A).

As usual, we write ω(Aτ z(B)) = FA,B(z) for z ∈ Sβ even when τ z(B) is
not well-defined. A (τ, β)-KMS states describes a physical system in thermal
equilibrium at inverse temperature β. For all practical purposes these states can
be considered as thermodynamic limits of Gibbs canonical ensembles.

The general theory of chemical potential in quantum statistical mechanics
is discussed in Sec. 5.4.3 of Ref. 11. In our study of linear response theory
we will only consider the chemical potential associated to the usual U (1) gauge
invariance of quantum mechanics. We will call charge flux the current associated to
the corresponding conserved charge. The extension of our results to more general
gauge groups is straightforward. Since we only need a fraction of the mathematical
structures commonly associated to the chemical potential we shall be brief. Let
ϑϕ be a C∗-dynamics on O such that τ t ◦ ϑϕ = ϑϕ ◦ τ t for all t, ϕ ∈ R. ϑ is the
gauge-group and its elements ϑϕ are gauge transformations. Physical observables
are invariant under gauge transformations and are therefore elements of

Oϑ = {A ∈ O | ϑϕ(A) = A for all ϕ ∈ R}. (2.1)

Note thatOϑ is a τ -invariant C∗-subalgebra ofO and so (Oϑ , τ ) is a C∗-dynamical

system. Let µ ∈ R and

αt = τ t ◦ ϑ−µt .

Clearly τ t and αt coincide on Oϑ . We say that a state ω on O is a (τ, ϑ, β, µ)-
KMS state if it is an (α, β)-KMS state. Although this last terminology is not
common, it is convenient for our purposes. A (τ, ϑ, β, µ)-KMS state describes
a physical system in equilibrium at inverse temperature β and chemical poten-
tial µ. Note that if ω is a (τ, ϑ, β, µ)-KMS state on O, then its restriction to the
gauge-invariant subalgebraOϑ is a (τ, β)-KMS state onOϑ which describes a ther-
modynamic limit of grand canonical ensembles associated to the parameters β,µ.
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3. THE MODEL AND THE FRAMEWORK

3.1. The Model

Our starting point are two C∗-dynamical systems (OL, τL) and (OR, τR) with
gauge-groups ϑL and ϑR. For convenience we shall call them the left, L, and the
right, R, system. We denote the generators of τL, τR, ϑL and ϑR by δL, δR, ξL and
ξR. For many applications the left system can be thought of as composed of a
first reservoir and a confined system, L = S + R1, while the right system is just
a second reservoir, R = R2. The generalizations of this setup are discussed in
Sec. 5.

The C∗-algebra of the joint system L + R is O = OL ⊗ OR and its
decoupled (non-interacting) dynamics is τ0 = τL ⊗ τR. The generator of τ0 is
δ0 = δL ⊗ I + I ⊗ δR. In the sequel, whenever the meaning is clear within the
context, we shall write δL for δL ⊗ I , δR for I ⊗ δR, etc.

The gauge-group of the joint system is ϑ = ϑL ⊗ ϑR and its generator is
ξ = ξL + ξR. We denote by Oϑ the corresponding gauge-invariant subalgebra
of O.

Let V ∈ Oϑ be a self-adjoint element describing the interaction of L and R.
The interacting C∗-dynamics τ is generated by δ = δ0 + i[V, · ] and commutes
with the gauge-group ϑ . The coupled (interacting) joint system L + R is described
by the C∗-dynamical system (O, τ ).

3.2. The Reference States

We set Iε(x) = (x − ε, x + ε) and write Iε = Iε(0).
Let βeq > 0 and µeq ∈ R be given reference (equilibrium) values of the in-

verse temperature and the chemical potential. We make the following assumptions
concerning the initial states of L and R.

(A1) ωL is the unique (τL, ϑL, βeq, µeq)-KMS state on OL. The reference
states of R are parametrized by β ∈ Iε1 (βeq) and µ ∈ Iε2 (µeq) and ωR,β,µ is the
unique (τR, ϑR, β, µ)-KMS state on OR. We shall denote ωR,βeq,µeq by ωR.

Throughout the paper we shall assume that (A1) holds. The reference states
of our model are ωL ⊗ ωR,β,µ, β ∈ Iε1 (βeq), µ ∈ Iε2 (µeq). For our purposes it is
convenient to introduce the parameters (thermodynamical forces)

X = βeq − β, Y = βµ − βeqµeq,

and to parametrize the reference states by X and Y , i.e., we write

ωX,Y,0 = ωL ⊗ ωR,β,µ.

Since we are interested in linear response theory, without loss of generality we
may restrict the values of X, Y to Iε , where ε > 0 is a small positive number. Note
that ω0,0,0 is the unique (τ0, ϑ, βeq, µeq)-KMS state on O.
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As we have already mentioned, under normal conditions all ωX,Y,0-normal
states are thermodynamically equivalent reference states of L + R. We now de-
scribe a particular ωX,Y,0-normal reference state which will play an important role
in our discussion of linear response theory.

Set

αt
L = τ t

L ◦ ϑ
−µeqt
L , αt

R,µ = τ t
R ◦ ϑ

−µt
R .

Assumption (A1) implies that ωL is the unique (αL, βeq)-KMS state on OL and
that ωR,β,µ is the unique (αR,µ, β)-KMS state on OR. Set

αt
X,Y,0 = αt

L ⊗ α
βt/βeq

R,µ .

Then ωX,Y,0 is the unique (αX,Y,0, βeq)-KMS state on O. Let δX,Y,0 be the generator
of αX,Y,0 and

δX,Y = δX,Y,0 + i[V, · ].

The subalgebra Dom (δL) ∩ Dom (ξL) ∩ Dom (δR) ∩ Dom (ξR) is a core for δX,Y,0

and δX,Y . On this subalgebra δX,Y,0 acts as

δX,Y,0 = δ0 − µeqξ − X

βeq
δR − Y

βeq
ξR. (3.2)

Let αX,Y be the C∗-dynamics generated by δX,Y . Araki’s perturbation theory yields
that there exists a unique (αX,Y , βeq)-KMS state ωX,Y on O.

The states ωX,Y,0 and ωX,Y are mutually normal. The reference states ωX,Y

will play a central role in our study of linear response theory. Note that ω0,0 is
the unique (τ, ϑ, βeq, µeq)-KMS state on O. We denote this state by ωeq. The next
assumption concerns the (τ, βeq)-KMS state induced by ωeq on the gauge invariant
subalgebra Oϑ .

(A2) For all A, B ∈ Oϑ ,

lim
|t |→∞

ωeq(τ t (A)B) = ωeq(A)ωeq(B).

A well-known consequence of the KMS condition and Assumption (A2) is
the relation

lim
t→+∞

∫ t

−t
ωeq([τ s(A), B]) ds = 0, (3.3)

which holds for all A, B ∈ Oϑ (see Theorem 5.4.12 in Ref. 11). This relation plays
a key role in the derivation of the Onsager reciprocity relations.
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3.3. Non-Equilibrium Steady States

We postulate relaxation to a NESS as follows:
(A3) For all X, Y ∈ Iε there exists a state ωX,Y,+ on Oϑ such that for all

A ∈ Oϑ ,

lim
t→+∞ ωX,Y (τ t (A)) = ωX,Y,+(A).

Assumptions (A2) and (A3) are strong ergodic hypotheses which are difficult
to verify in concrete models. We remark that in typical physical situations one
expects more, namely that

lim
t→+∞ η(τ t (A)) = ωX,Y,+(A),

for all ωX,Y,0-normal states η and A ∈ Oϑ . Indeed, such strong form of approach to
NESS has been established in all examples we consider in Refs. 19–21. However,
we will not need such an assumption in our axiomatic study of linear response
theory.

3.4. Time-Reversal Invariance

Our next assumption concerns time-reversal.
(A4) There exists a time-reversal � of (O, τ0) such that �(V ) = V and

� ◦ τ t
L = τ−t

L ◦ �, � ◦ τ t
R = τ−t

R ◦ �,

� ◦ ϑ
ϕ
L = ϑ

−ϕ
L ◦ �, � ◦ ϑ

ϕ
R = ϑ

−ϕ
R ◦ �,

for all t, ϕ ∈ R.
Clearly, � is a time-reversal of (O, ϑ) and (O, αX,Y,0). In particular it leaves

Oϑ invariant. It is not difficult to show that � is also a time-reversal of (O, τ )
and (O, αX,Y ), and that the states ωX,Y,0 and ωX,Y are time-reversal invariant. The
proofs of these facts are the same as the proof of Lemma 3.1 in Ref. 18.

3.5. Fluxes

To define the flux observables we need:
(A5) V ∈ Dom (δR) ∩ Dom (ξR).
If (A5) holds, we set

� = δR(V ), J = ξR(V ).

The observable � describes the heat flux out of the system R. The observable J
describes the charge flux out of R. Since V ∈ Oϑ and τR, ϑR commute with ϑ we
have �,J ∈ Oϑ . If the time-reversal assumption (A4) holds, then

�(�) = −�, �(J ) = −J .
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3.6. Entropy Balance Equation

In the recent literature the entropy balance equation has been always discussed
with respect to the product reference state ωX,Y,0.(22,24,25,31) The finite time entropy
balance equation w.r.t. the reference state ωX,Y has the following form.

Theorem 3.1. Assume that V ∈ Dom (δL) ∩ Dom (ξL) ∩ Dom (δR) ∩ Dom (ξR).
Then

Ent(ωX,Y ◦ τ t |ωX,Y ) = −X

∫ t

0
ωX,Y (τ s(�))ds − Y

∫ t

0
ωX,Y (τ s(J ))ds. (3.4)

Proof. The assumptions of the theorem imply that V ∈ Dom (δX,Y ). Since V ∈ Oϑ

implies ξ (V ) = 0, we have

βeqδX,Y (V ) = βeqδ(V ) − X� − YJ . (3.5)

The entropy balance equation of Refs. 22, 25 yields

Ent(ωX,Y ◦ τ t |ωX,Y,0) = Ent(ωX,Y |ωX,Y,0) + βeq

∫ t

0
ωX,Y (τ s(δX,Y (V ))) ds

= Ent(ωX,Y |ωX,Y,0) + βeqωX,Y (τ t (V )) − βeqωX,Y (V ) (3.6)

−X

∫ t

0
ωX,Y (τ s(�))ds − Y

∫ t

0
ωX,Y (τ s(J )) ds.

The fundamental formula of Araki(1,2) (see also Refs. 11, 14, 15) yields that

Ent(ωX,Y ◦ τ t |ωX,Y ) = Ent(ωX,Y ◦ τ t |ωX,Y,0) − βeqωX,Y (τ t (V )) + C,

Ent(ωX,Y |ωX,Y,0) = βeqωX,Y (V ) − C, (3.7)

where C is a constant expressible in terms of the modular structure (we do not
need its explicit form here). The relations (3.6) and (3.7) yield the statement. �

The entropy production of the NESS ωX,Y,+ is defined by

Ep(ωX,Y,+) = − lim
t→+∞

Ent(ωX,Y ◦ τ t |ωX,Y )

t
.

Theorem 3.1 yields

Ep(ωX,Y,+) = XωX,Y,+(�) + YωX,Y,+(J ) ≥ 0, (3.8)

and this relation is the second law of thermodynamics for our model. Of course,
if (X, Y ) 
= (0, 0), then under normal conditions one expects that Ep(ωX,Y,+) > 0,
i.e., that the fluxes are non-vanishing. The strict positivity of entropy production



556 Jakšić, Ogata, and Pillet

is a detailed dynamical question which can be answered only in the context of
specific models.

3.7. Centered Observables

An observable A ∈ O is called centered if ωX,Y (A) = 0 for all X, Y ∈ Iε .
We denote by C the set of all centered observables. Obviously, C is a norm-closed
vector subspace of O. Our derivation of the Green-Kubo formula applies only to
centered observables.

If Assumption (A4) holds, then any self-adjoint observable A satisfying
�(A) = −A is centered. Indeed, since ωX,Y is time-reversal invariant,

ωX,Y (A) = ωX,Y (�(A)) = −ωX,Y (A),

and so ωX,Y (A) = 0. In particular, if (A4) holds, then the flux observables � and
J are centered.

It is an important fact that the flux observables are centered irrespectively of
the time-reversal assumption. This fact will play a central role in our discussion
of the Green-Kubo formula for systems which are not time-reversal invariant.

Proposition 3.2. Under Assumption (A5)

ωX,Y (�) = ωX,Y (J ) = 0,

holds for all X, Y ∈ Iε .

Proof. Assume first that

V ∈ Dom (δL) ∩ Dom (ξL) ∩ Dom (δR) ∩ Dom (ξR). (3.9)

Note that C∗-dynamics αX,Y is well-defined for all X, Y ∈ R. The following
generalization of the entropy balance Eq. (3.4) holds: for all X, Y ∈ Iε and Z , U ∈
R,

Ent
(
ωX,Y ◦ αt

Z ,U |ωX,Y

) = −(X − Z )
∫ t

0
ωX,Y

(
αs

Z ,U (�)
)

ds

−(Y − U )
∫ t

0
ωX,Y

(
αs

Z ,U (J )
)

ds. (3.10)

The proof of this relation is essentially the same as the proof of (3.4). The only
difference is that the relation (3.5) is now replaced with

βeqδX,Y (V ) = βeqδZ ,U (V ) − (X − Z )� − (Y − U )J . (3.11)
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The entropy balance equation of Refs. 22, 25 yields

Ent
(
ωX,Y ◦ αt

Z ,U |ωX,Y,0
) = Ent(ωX,Y |ωX,Y,0) + βeq

∫ t

0
ωX,Y

(
αs

Z ,U (δX,Y (V ))
)

ds,

and the rest of the argument follows line by line the proof of Theorem 3.1.
The Eq. (3.10) yields

lim
t↓0

Ent
(
ωX,Y ◦ αt

Z ,U |ωX,Y

)
t

= −(X − Z )ωX,Y (�) − (Y − U )ωX,Y (J ),

and so for all X, Y ∈ Iε and Z , U ∈ R,

(X − Z )ωX,Y (�) + (Y − U )ωX,Y (J ) ≥ 0.

This relation yields the statement.
To prove the general case, let V ∈ Dom (δR) ∩ Dom (ξR) and

Vj = j

π

∫
R

2
e− j(t2+s2)τ t

L ◦ ϑ s
L(V ) dt ds, j = 1, 2, . . . .

The observables Vj satisfy (3.9). Let ωX,Y, j and � j ,J j be the reference state and
the flux observables associated to Vj . We have established that for all X, Y ∈ Iε ,

ωX,Y, j (� j ) = ωX,Y, j (J j ) = 0. (3.12)

By the properties of analytic approximations (see Ref. 11) ‖ωX,Y, j − ωX,Y ‖ →
0, ‖� j − �‖ → 0, ‖J j − J ‖ → 0 as j → ∞, and the statement follows from
(3.12). �

Note that we did not use the gauge invariance of V in the above proof.

3.8. Regular Observables

As mentioned in the introduction, our derivation of GKF relies on the as-
sumption that the t → +∞ limit can be interchanged with differentiation w.r.t.
X, Y . We note that if the states ωL, ωR,β,µ are ergodic for β,µ sufficiently close
to βeq, µeq then it is not difficult to show that the states ωX,Y are mutually sin-
gular for distinct values of X, Y . Therefore the differentiability of the function
(X, Y ) 
→ ωX,Y (τ t (A)) is an extremely delicate question, already for finite t . How-
ever, as we shall see in Subsec. 4.2, one can prove that this function is differentiable
at X = Y = 0 under very mild regularity assumptions on A, provided A is centered
(this is the content of our main technical result, Theorem 4.2).

The following definition encapsulates our assumption on the interchange of
limits.
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Definition 3.3. Assume that (A3) holds. Let A ∈ Oϑ be an observable such that
the function

(X, Y ) 
→ ωX,Y (τ t (A)),

is differentiable at (0, 0) for all t . We call such an observable regular if the function

(X, Y ) 
→ ωX,Y,+(A),

is also differentiable at (0, 0) and

lim
t→+∞ ∂XωX,Y (τ t (A))

∣∣
X=Y=0

= ∂XωX,Y,+(A)
∣∣

X=Y=0
,

lim
t→+∞ ∂Y ωX,Y (τ t (A))

∣∣
X=Y=0

= ∂Y ωX,Y,+(A)
∣∣

X=Y=0
. (3.13)

4. LINEAR RESPONSE THEORY

4.1. Overview

Suppose that Assumptions (A3) and (A5) hold and that the functions

(X, Y ) 
→ ωX,Y,+(�), (X, Y ) 
→ ωX,Y,+(J ),

are differentiable at (0, 0). The kinetic transport coefficients are defined by

Lhh = ∂XωX,Y,+(�)
∣∣

X=Y=0
,

Lhc = ∂Y ωX,Y,+(�)
∣∣

X=Y=0
,

Lch = ∂XωX,Y,+(J )
∣∣

X=Y=0
, (4.14)

Lcc = ∂Y ωX,Y,+(J )
∣∣

X=Y=0
,

where indices h/c stand for heat/charge. Linear response theory is concerned with
these coefficients. An elementary consequence of the second law (Relation (3.8))
is that the matrix

L =
[

Lhh Lhc

Lch Lcc

]
,

is positive definite on the real vector space R
2 (this of course does not imply that

Lhc = Lch!).
The Green-Kubo formulas are at the center of linear response theory. For

A, B ∈ Oϑ we set

L(A, B) = lim
t→+∞

1

2

∫ t

−t
ωeq(Aτ s(B)) ds.
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The GKF assert that if the system is time-reversal invariant, then

Lhh = L(�,�),

Lhc = L(�,J ),

Lch = L(J ,�), (4.15)

Lcc = L(J ,J ).

These formulas are mathematical expressions of the fluctuation-dissipation
mechanism in statistical mechanics—they link linear response to a thermodynam-
ical force to the equilibrium correlations w.r.t. the corresponding flux observable.

The coefficients Lhc and Lch are of particular physical importance. In words,
the chemical potential difference may cause a heat flow out of R even if L and R are
at the same temperature. For Y small, this flow is equal to Y Lhc + o(Y ). Similarly,
the temperature difference may cause a charge flow out of R even if L and R have
equal chemical potentials. For X small this flow is equal to X Lch + o(X ). An
immediate consequence of the second and third relation in (4.15) and the formula
(3.3) are the Onsager reciprocity relations

Lhc = Lch. (4.16)

For A, B ∈ Oϑ and t ∈ R we set

L(A, B, t) = 1

βeq

∫ t

0
ds

∫ βeq

0
du ωeq(τ s(A)τ iu(B)),

and

L(A, B) = lim
t→+∞L(A, B, t),

whenever the limit exists. We remark that by the KMS condition the function

(s, z) 
→ ωeq(τ s(A)τ z(B)),

is bounded and continuous on the set R × Sβeq . The central step in our derivation
of (4.15) are the following formulas

Lhh = L(�,�),

Lhc = L(�,J ),

Lch = L(J ,�), (4.17)

Lcc = L(J ,J ).

It is an important point that these formulas hold without the time-reversal
assumption— they are the Green-Kubo formulas for systems which are not time-
reversal invariant. The Green-Kubo formulas (4.15) are an immediate consequence
of (4.17) and the following result established in Ref. 18.
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Proposition 4.1. Suppose that Assumptions (A1), (A2), and (A4) hold and let
A, B ∈ Oϑ be two self-adjoint observables which are both even or odd under �.
Then

L(A, B) = L(A, B).

Proof. The argument follows line by line the proof of Theorem 2.3 in Ref. 18.
For reader convenience we outline the main steps of the argument.

We need to prove that

lim
t→+∞

1

βeq

∫ βeq

0

[∫ t

0
ωeq(τ s(A)τ iu(B))ds

]
du = lim

t→+∞

∫ t

−t
ωeq(Aτ s(B))ds.

The time-reversal invariance and the KMS-condition yield that for s ∈ R and
u ∈ [0, β],

ωeq(τ s(A)τ iu(B)) = ωeq(τ−s(A)τ iβeq−iu(B)),

and so

1

βeq

∫ βeq

0

[∫ t

0
ωeq(τ s(A)τ iu(B))ds

]
du = 1

2βeq

∫ βeq

0

[∫ t

−t
ωeq(Aτ s+iu(B))ds

]
du.

Since the integral of the function z 
→ ωeq(Aτ z(B)) over the boundary of the
rectangle with vertices −t, t, t + iu,−t + iu is zero, we have

1

βeq

∫ βeq

0

[∫ t

0
ωeq(τ s(A)τ iu(B))ds

]
du = 1

2

∫ t

−t
ωeq(Aτ s(B))ds

+ 1

2βeq

∫ βeq

0
R(t, u)du, (4.18)

where

R(t, u) = i
∫ u

0

[
ωeq(Aτ t+iy(B)) − ωeq(Aτ−t+iy(B))

]
dy.

Assumption (A2) implies that

lim
t→+∞ ωeq(Aτ±t+iy(B)) = ωeq(A)ωeq(B),

and the dominated convergence theorem yields

lim
t→+∞ sup

0≤u≤β

|R(t, u)| = 0.

This fact and the formula (4.18) yield the statement. �

In the next subsection we state our main results concerning the Green-Kubo
formulas.
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4.2. The Green-Kubo Formulas

As already mentioned, our main technical result concerns the differentiability
at (0, 0) and for finite t of the function (X, Y ) 
→ ωX,Y (τ t (A)). The resulting finite
time linear response formula is the content of the next Theorem. We set

Oϑ,R = Oϑ ∩ Dom (δR) ∩ Dom (ξR),

Oϑ,R,c = Oϑ,R ∩ C.

Theorem 4.2. Suppose that Assumptions (A1) and (A5) hold and let A ∈ Oϑ,R,c.
Then for all t ∈ R the function

(X, Y ) 
→ ωX,Y (τ t (A)),

is differentiable at (0, 0) and

∂XωX,Y (τ t (A))
∣∣

X=Y=0
= L(A,�, t),

∂Y ωX,Y (τ t (A))
∣∣

X=Y=0
= L(A,J , t).

We will prove Theorem 4.2 in Subsec. 4.3. The next two theorems are conse-
quence of Theorem 4.2, definition of the regular observable, and Proposition 4.1.

Theorem 4.3. Suppose that Assumptions (A1), (A3) and (A5) hold.

(1) Let A ∈ Oϑ,R,c be a regular observable. Then

∂XωX,Y,+(A)
∣∣

X=Y=0
= L(A,�),

∂Y ωX,Y,+(A)
∣∣

X=Y=0
= L(A,J ).

(2) If in addition (A2) and (A4) hold and A ∈ Oϑ,R is a regular self-adjoint
observable such that �(A) = −A, then

∂XωX,Y,+(A)
∣∣

X=Y=0
= L(A,�),

∂Y ωX,Y,+(A)
∣∣

X=Y=0
= L(A,J ).

Theorem 4.4. Suppose that Assumptions (A1), (A3) and (A5) hold and that �,J
are regular observables in Dom (δR) ∩ Dom (ξR). Then the formulas (4.17) hold.
If in addition (A2) and (A4) hold, then the formulas (4.15) and (4.16) hold.
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Theorem 4.2 was proven in Ref. 18 in the case µeq = 0, Y = 0. The technical
extensions of the proofs in Ref. 18 needed to accommodate charge fluxes are
relatively minor and are discussed in the next section.

4.3. Proof of Theorem 4.2

We will freely use the notation introduced in Subsec. 3.1.

Lemma 4.5.

(a) The group α0,0 preserves Dom (δR) ∩ Dom (ξR) and for A ∈ Dom (δR) ∩
Dom (ξR) the functions

R � t 
→ δR
(
αt

0,0(A)
)
, R � t 
→ ξR

(
αt

0,0(A)
)
,

are norm continuous.
(b) For all t ∈ R and A ∈ Dom (δR) ∩ Dom (ξR),

αt
X,Y (A) − αt

0,0(A) = − X

βeq

∫ t

0
αt−s

X,Y (δR
(
αs

0,0(A))
)
ds

− Y

βeq

∫ t

0
αt−s

X,Y

(
ξR(αs

0,0(A))
)
ds.

(c) For all t ∈ R and A ∈ O,

lim
(X,Y )→(0,0)

‖αt
X,Y (A) − αt

0,0(A)‖ = 0.

(d) For all A ∈ O,

lim
(X,Y )→(0,0)

ωX,Y (A) = ωeq(A).

Proof. To simplify notation let us set α0 = α0,0,0 and α = α0,0. We shall use the
identity

αt (A) = �tα
t
0(A)�∗

t ,

where �t ∈ O is a family of unitary elements defined by

�t = 1l +
∑
n≥1

(it)n

∫
0≤sn≤···s1≤1

α
tsn
0 (V ) · · ·αts1

0 (V )ds1 · · · dsn,

see Proposition 5.4.1 in Ref. 11. Since V ∈ Dom (δR) ∩ Dom (ξR), one easily
shows that �t ∈ Dom (δR) ∩ Dom (ξR) and that

δR(�t ) =
∑
n≥1

(it)n

∫
0≤sn≤···s1≤1

∑
j

α
tsn
0 (V ) · · · αts j

0 (δR(V )) · · · αts1
0 (V )ds1 · · · dsn,
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ξR(�t ) =
∑
n≥1

(it)n

∫
0≤sn≤···s1≤1

∑
j

α
tsn
0 (V ) · · ·αts j

0 (ξR(V )) · · · αts1
0 (V )ds1 · · · dsn.

These two formulas yield that the functions

t 
→ δR(�t ), t 
→ ξR(�t ),

are norm continuous. Finally, the identities

δR(αt (A)) = δR(�t )α
t
0(A)�∗

t + �tα
t
0(δR(A))�∗

t + �tα
t
0(A)δR(�∗

t ),

ξR(αt (A)) = ξR(�t )α
t
0(A)�∗

t + �tα
t
0(ξR(A))�∗

t + �tα
t
0(A)ξR(�∗

t ),

yield Part (a).
If A ∈ Dom (δL) ∩ Dom (δR) ∩ Dom (ξL) ∩ Dom (ξR), then

d

dt
α−t

X,Y ◦ αt (A) = X

βeq
α−t

X,Y (δR(αt (A))) + Y

βeq
α−t

X,Y (ξR(αt (A))),

and (b) follows. The case A ∈ Dom (δR) ∩ Dom (ξR) is handled by approximating
A with the sequence

A j = j

π

∫
R

2
e− j(t2+s2)τ t

L ◦ ϑ s
L(A)dtds,

see the proof of Lemma 3.3 in Ref. 18.
Since Dom (δR) ∩ Dom (ξR) is dense in O, (b) implies (c). The proof of (d)

is the same as the proof of Lemma 3.4 in Ref. 18. �

Lemma 4.6. Let A ∈ Oϑ,R,c. Then for all t ∈ R the function

(X, Y ) 
→ ωX,Y (τ t (A)),

is differentiable at (0, 0), and

∂XωX,Y (τ t (A))
∣∣

X=Y=0
= 1

βeq

∫ t

0
ωeq(δR(τ s(A))) ds,

∂Y ωX,Y (τ t (A))
∣∣

X=Y=0
= 1

βeq

∫ t

0
ωeq(ξR(τ s(A))) ds.

Proof. Since A is a centered observable and ωX,Y is αX,Y -invariant, we have that
ωX,Y (αt

X,Y (A)) = 0 for all t . Since α0,0 = τ on Oϑ , we have that ωX,Y (αt
0,0(A)) =

ωX,Y (τ t (A)) and ω0,0(τ t (A)) = ωeq(τ t (A)) = 0 for all t . These observations and
Part (b) of Lemma 4.5 imply

ωX,Y (τ t (A)) − ω0,0(τ t (A)) = X

βeq

∫ t

0
ωX,Y (δR(τ s(A))) ds

+ Y

βeq

∫ t

0
ωX,Y (ξR(τ s(A))) ds.
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This relation, Lemma 4.5, and dominated convergence yield the statement. �

Lemma 4.7. Assume that A ∈ Oϑ,R. Then

ωeq(δR(A)) =
∫ βeq

0
ωeq(Aτ is(�)) ds,

ωeq(ξR(A)) =
∫ βeq

0
ωeq(Aτ is(J )) ds.

Proof. This lemma is the central and technically most demanding step of the
argument. Fortunately, its proof is identical to the proof of Lemma 3.6 in Ref. 18.
This follows from the fact that A, V,�,J ∈ Oϑ and that ωeqOϑ is a (τ, βeq)-KMS
state. �

Theorem 4.2 is an immediate consequence of Lemmas 4.6 and 4.7.

5. SOME GENERALIZATIONS

Although we have restricted ourselves in this note to two coupled quan-
tum dynamical systems, the model, the framework and all our results have a
straightforward extension to the case of M systems. Let βeq and µeq be the ref-
erence (equilibrium) values of the inverse temperature and chemical potential.
For j = 1, . . . , M let (O j , τ j , ω j,β j µ j ) be quantum dynamical systems with gauge
groups ϑ j where ω j is a (τ j , ϑ j , β j , µ j )-KMS state. We denote by δ j and ξ j the
generators of τ j and ϑ j . Assumption (A1) is replaced with

(G1) The reference states of the j-th system are parametrized by β j ∈ Iε(βeq)
and µ j ∈ Iε(µeq) and ω j,β j µ j is the unique (τ j , ϑ j , β j , µ j )-KMS state on O j .

Let O = O1 ⊗ · · · ⊗ OM , τ0 = τ1 ⊗ · · · ⊗ τM , ϑ = ϑ1 ⊗ · · · ⊗ ϑM . The al-
gebra Oϑ is again defined by (2.1). The pair (O, τ0) describes the uncoupled
joint system. Let V ∈ Oϑ be a self-adjoint perturbation and τ the perturbed
C∗-dynamics. The coupled joint system is described by (O, τ ). The thermody-
namical forces are

X j = βeq − β j , Y j = β jµ j − βeqµeq.

We set X = (X1, . . . , X M ), Y = (Y1, . . . , YM ). The reference state is ωX,Y,0 =
ω1,β1µ1 ⊗ · · · ⊗ ωM,βM µM . ωX,Y,0 is the unique βeq-KMS state for the C∗-dynamics

αt
X,Y,0 = [

τ
β1t/βeq

1 ◦ ϑ
−µ1β1t/βeq

1

] ⊗ · · · ⊗ [
τ

βM t/βeq

M ◦ ϑ
−µM βM t/βeq

M

]
.

Let δX,Y,0 be the generator of αX,Y,0 and δX,Y = δX,Y,0 + i[V, · ]. Let αX,Y be
the C∗-dynamics generated by δX,Y and let ωX,Y be the (αX,Y , βeq)-KMS state
obtained from ωX,Y,0 by Araki’s perturbation theory. This completes the setup
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of the model. Note that the state ωeq ≡ ω0,0 is the unique (τ, ϑ, βeq, µeq)-KMS
state on O. Assumptions (G2) has the same formulation as Assumption (A2) and
Assumptions (A3), (A4) and (A5) are replaced with:

(G3) For all X, Y ∈ I M
ε there exists a state ωX,Y,+ on Oϑ such that for all

A ∈ Oϑ ,

lim
t→+∞ ωX,Y (τ t (A)) = ωX,Y,+(A).

(G4) There exists a time-reversal � of (O, τ0) such that �(V ) = V and

� ◦ τ t
j = τ−t

j ◦ �, � ◦ ϑ t
j = ϑ−t

j ◦ �,

for all j .
(G5) V ∈ Dom (δ j ) ∩ Dom (ξ j ) for all j .
The observables associated to the heat and charge flux out of the j-th system

are

� j = δ j (V ), J j = ξ j (V ).

It immediately follows that

M∑
j=1

ωX,Y,+(� j ) = 0 and
M∑

j=1

ωX,Y,+(J j ) = 0,

which are respectively the first law of thermodynamics (conservation of energy)
and charge conservation. The entropy balance equation reads

Ent(ωX,Y ◦ τ t |ωX,Y ) = −
M∑

j=1

X j

∫ t

0
ωX,Y (τ s(� j ))ds

−
M∑

j=1

Y j

∫ t

0
ωX,Y (τ s(J j ))ds,

and in particular the second law holds:

Ep(ωX,Y,+) =
M∑

j=1

X j ωX,Y,+(� j ) +
M∑

j=1

Y j ωX,Y,+(J j ) ≥ 0. (5.19)

The definition of the centered observable is the same as in Subsec. 3.7. We
set

Ôϑ = (∩M
j=1Dom (δ j )

) ∩ (∩M
j=1Dom (ξ j )

) ∩ Oϑ ,

Ôϑ,c = Ôϑ ∩ C.
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If V ∈ Ôϑ , then � j ,J j ∈ Ôϑ,c for all j (after obvious notational changes,
Proposition 3.2 applies directly to the model consider in this section).

Theorem 4.2 is replaced with:

Theorem 5.1. Suppose that Assumptions (G1) and (G5) hold and let A ∈ Ôϑ,c.
Then for all t ∈ R the function

(X, Y ) 
→ ωX,Y (τ t (A)),

is differentiable at (0, 0) and

∂X j ωX,Y (τ t (A))
∣∣

X=Y=0
= L(A,� j , t),

∂Y j ωX,Y (τ t (A))
∣∣

X=Y=0
= L(A,J j , t).

The definition of the regular observable is the same as before, and we have:

Theorem 5.2. Suppose that Assumptions (G1), (G3) and (G5) hold.

(1) Let A ∈ Ôϑ,c be a regular observable. Then

∂X j ωX,Y,+(A)
∣∣

X=Y=0
= L(A,� j ),

∂Y j ωX,Y,+(A)
∣∣

X=Y=0
= L(A,J j ).

(2) If in addition (G2) and (G4) hold and A ∈ Ôϑ is a regular self-adjoint
observable such that �(A) = −A, then

∂X j ωX,Y,+(A)
∣∣

X=Y=0
= L(A,� j ),

∂Y j ωX,Y,+(A)
∣∣

X=Y=0
= L(A,J j ).

Theorem 5.3. Suppose that (G1), (G3) and (G5) hold and that � j ,J j are
regular observables in Dom (δ j ) ∩ Dom (ξ j ). Then:

(1) The kinetic transport coefficients

Lk j
hh = ∂X j ωX,Y,+(�k)

∣∣
X=Y=0

,

Lk j
hc = ∂Y j ωX,Y,+(�k)

∣∣
X=Y=0

,

Lk j
ch = ∂X j ωX,Y,+(Jk)

∣∣
X=Y=0

,

Lk j
cc = ∂Y j ωX,Y,+(Jk)

∣∣
X=Y=0

,
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satisfy

Lk j
hh = L(�k,� j ),

Lk j
hc = L(�k,J j ),

Lk j
ch = L(Jk,� j ),

Lk j
cc = L(Jk,J j ).

Assume in addition that (G2) and (G4) hold. Then
(2) The Green-Kubo formulas hold:

Lk j
hh = L(�k,� j ),

Lk j
hc = L(�k,J j ),

Lk j
ch = L(Jk,� j ),

Lk j
cc = L(Jk,J j ).

(3) The Onsager reciprocity relations hold:

Lk j
hh = L jk

hh,

Lk j
cc = L jk

cc ,

Lk j
hc = L jk

ch .

The remark after Theorem 4.4 applies to Theorems 5.2 and 5.3.
In the literature one often considers a special case, described in the intro-

duction, where one of the quantum dynamical systems, say (O1, τ1, ω1,β1µ1 ), is
finite dimensional and plays a role of a “small” quantum system S coupled to
reservoirs described by (O j , τ j , ω j,β j µ j ), j ≥ 2. Such systems are one of the ba-
sic paradigms of non-equilibrium quantum statistical mechanics and have played
an important role in the historical development of the subject. With regard to
the algebraic approach described in this note, the only additional feature of
these models is vanishing of heat and charge fluxes out of the small system:
ωX,Y,+(�1) = ωX,Y,+(J1) = 0.

Many other generalizations are possible and it appears difficult to have a
unified framework which covers all cases of physical interest. The Electronic
Black Box Models studied in Refs. 6, 7, 21 are examples of open quantum systems
which do not fit directly into the class of models described here (the non-interacting
coupled system is not a tensor product of the individual subsystems). However,
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the changes needed to apply our results to these models are elementary. One
may also consider W ∗-dynamical systems instead of C∗-dynamical systems and
unbounded interactions which are only affiliated to the algebra of observables.
The models where such generalization is necessary involve free bosonic reservoirs
(a well-known example is the spin-boson model). One may also consider time-
dependent interactions (see Refs. 3, 24, 25, 29). Another possible generalization
involves more general gauge groups. The important point is that although all such
generalizations may require some adjustment of technique and presentation, they
bring nothing conceptually new.
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